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A B S T R A C T

Recent years have witnessed that the multimodal medical image fusion (MMIF) plays critical roles in clinical
diagnostics and treatment. Many MMIF algorithms have been proposed to improve the MMIF images quality.
The quality of multimodal medical fused images will significantly affect the results of the clinical diagnosis.
However, little work has been designed to evaluate the effectiveness of MMIF algorithms and the quality
of MMIF images. To this end, this paper presents a perceptual quality assessment method for MMIF. A MMIF
image database (MMIFID) is first built to employ the classical MMIF algorithms, and the subjective experiment
is conducted to assess the quality of each fused image. Then, a no-reference objective method is proposed for
the perceptual quality evaluation of MMIF images,which uses Pulse Coupled Neural Network (PCNN) in Non-
subsampled Contourlet Transform (NSCT). A fused image is decomposed by NSCT into low frequency sub-band
(LFS) and high frequency sub-band (HFS). It is used to motivate the PCNN processing, and large firing times
are employed to measure LFS and HFS. Finally, two components evaluation results are combined to obtain the
overall objective quality score. Experimental results based on the MMIFID indicate that our presented method
outperforms the existing image fusion quality evaluation metrics, and it provides a satisfactory correlation
with subjective scores, which shows effectiveness in the quality assessment of medical fused images.

1. Introduction

With the advent of computer technology, there are different imaging
modalities in clinical use, such as ultrasound (US), computed tomog-
raphy (CT), T1 T2 sequences of magnetic resonance imaging (MRI),
positron emission tomography (PET) and single photon emission com-
puted tomography (SPECT). Different imaging modalities supply re-
spective specific information of human body, such as MRI give normal
and pathological soft tissue,whereas PET provide blood flow and flood
activity [1,2]. By fusing MRI and PET images, a single image that
effectively provide morphologic anatomical structures and metabolic
activities simultaneously can be obtained [3,4]. Hence, many multi-
modal medical image fusion (MMIF) schemes have become attracted
wide attention. But the performance evaluation of these MMIF al-
gorithms and fused images has not been fully understood. Although
subjective evaluation is a direct and reliable way. It is extremely time-
consuming. Furthermore, it is hard to be merged into the designing and
optimization of image fusion. So, objective quality evaluation metrics
attract much attention [5–8]. In the literature, some general-purpose
no-reference (NR) quality measures have been proposed for fused im-
ages [9–15]. Among these quality metrics, they have achieved effective-
ness in all kinds of image fusion types, including multi-exposure image
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fusion, multi-focus image fusion, and multimodal medical image fusion,
they are not designed for MMIF, which show limited performance
in evaluating the MMIF algorithms and the quality of medical fused
images. So quality assessment metrics for MMIF specifically designed
are eagerly desired.

As we know, ground-truth subjective score is very important for
assessing the performance of any new objective strategy. Multimodal
medical image fusion image database (MMIFID) can be directly em-
ployed for the test and comparison of the effectiveness and efficiency
of different MMIF algorithms and fused images. So a MMIFID is firstly
constructed. Established on the database, we conduct the subjective
experiment to collect the subjective ratings. MMIF algorithms are then
evaluated using the subjective study, which can evaluate and compare
the quality of the fused images.

Based on the subjective database, a perceptual quality assessment
metric is proposed for MMIF. As there are no perfect reference images
in real-world medical imaging, and after many years of medical edu-
cation and clinical experience, radiologists do not have any reference
images for diagnosis. Thus, no reference metric is recommended for as-
sessing medical fused images. In image processing, plenty of studies in
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Fig. 1. 34 pairs of different modalities medical images used to build the MMIFID database.

the literature indicate that multiscale transform (MST)-based methods
(e.g., nonsubsampled contourlet transform (NSCT) and nonsubsampled
shearlet transform (NSST)) have exhibited significant advantages on
account of their higher effectiveness in image representation. Many
MMIF algorithms are introduced in a MST manner to pursue perceptu-
ally good results. In recent years, pulse coupled neural network (PCNN)
under MST-based medical image fusion methods have been proposed.
Here, we just give a few latest examples. Yin et al. [16] proposed
a medical image fusion method based on NSCT and PCNN. Huang
et al. [17] used NSCT and PCNN for the fusion of SPECT and CT
images to improve the quality of fused brain images. Jin et al. [18]
proposed simplified PCNN based on non-subsampled shearlet transform
(NSST-PCNN) for multimodal sensor medical image fusion. Among
these methods, PCNN is often used to extract the activity level of
the decomposed coefficients obtained by a certain MST. The firing
times of each output neuron over a number of iterations are typically
employed to measure the activity level of its corresponding coefficient.
Thus, PCNN based on MST methods have been verified a very suitable
tool for processing medical image. In this article, we aimed to extract
medical images features effectively for quality assessment. NSCT has
better performance due to flexible multiscale, multidirectional, and
shift-invariant image decomposition [19–21]. Pulse Coupled Neural
Network (PCNN) is a bionic feedback neural network [22,23], which
is a single-layer two-dimensional horizontally connected neuron array
with a one to one correspondence between image pixels and neurons. A
fused image represent with the different features. The features sensitive
to human visual system (HVS) exist in different scales of images [24–
26]. The NSCT coefficient value used to motivate PCNN can measure
importance/contribution of fused image [27–29]. Based on the above

advantages, NSCT and PCNN are first introduced for quality assessment
of MMIF. First, the fused images are decomposed into low-frequency
sub-band (LFS) and high-frequency sub-band (HFS) via NSCT, which is
used to stimulate PCNN-processing. Then, large firing times are selected
to measure LFS and HFS. Finally, two parts evaluation results are inte-
grated to generate the final quality assessment score. The experimental
results on the MMIFID database indicate that the presented scheme is
better than the existing image fusion quality evaluation metrics.

The rest of this paper is organized as follows. In Section 2, subjective
study is briefly introduced. Section 3 presents the theories of NSCT
and PCNN, and provides a detailed analysis of proposed quality metric.
Experimental results and analysis are presented in Section 4. Section 5
gives conclusion and discussion.

2. Subjective study of medical fused images

2.1. Database construction and subjective experiment

34 pairs of images (256 × 256) are used to construct the subjective
database, which are shown in Fig. 1. These image pairs are selected
to cover different imaging modalities, which are divided into CT and
MRI, MRI-T1 and MRI-T2, B ultrasound and SPECT, MRI and PET, MRI
and SPECT. Eight representative MMIF algorithms are selected, and 272
medical fused images are generated, where MMIF algorithms include
medical image fusion with nuclear norm minimization [30] (NNM),
image fusion with multi scale transform and sparse representation [15]
(LP-SR), volumetric medical image fusion with cross-scale coefficient
selection [31] (CSCS), image fusion with guided filtering [32] (GFF),
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Fig. 2. An example of fused images (a)–(h) created by different MMIF algorithms..

Fig. 3. GUI interface used for quality rating.

NSCT-based multimodal medical image fusion using pulse-coupled neu-
ral network and modified spatial frequency [33] (DES), medical image
fusion with improved sum-modified-laplacian [34] (ISML), image fu-
sion with convolutional sparse representation [35] (CSR), multimodal
medical image fusion with discrete tchebichef moments and pulse
coupled neural network [3] (DTM-PCNN). In DTM-PCNN, Tchebichef
moments have been found effective in image analysis due to their
superior capabilities of feature representation. Tchebichef moments are
defined directly on image coordinates, so there is no approximation
error in the computation of Tchebichef moments [3,36,37]. Fig. 2 gives
an example with fusion results produced by eight fusion algorithms.

Different from natural image quality assessment, the quality evalua-
tion of MMIF images is usually from radiologists ′ perspective, which is
normally focused on the diagnostic task. So, 20 radiologists participated
in the subjective test, all with medical education background of imaging
diagnosis related researches. In order to conveniently obtain the image
quality, a custom MATLAB figure window is used as to make the
images on the screen, which is shown in Fig. 3. The fused images
were arranged randomly to avoid any position selection bias. They
can observe all the necessary details under normal light condition by
adopting a LCD (1920 × 1280) display, similar to those applied during

clinical routine. In fact, the subjective visual quality evaluation depends
on the diagnostic task that refers to radiologists give a confidence rating
concerning the presence of a lesion. In other word, it depends on the
information that can be extracted from the fused images themselves.
Since the ultimate goal of MMIF is to facilitate the diagnostic process,
any visual artifact in the fused images may obstruct diagnostic con-
clusions and lead to severe consequences. Radiologists would prefer
high quality images for accurate diagnose, a high quality fused image
will increase the confidence in diagnosing and subsequently lead to
the right treatment. Thus, they give a ranking score 0–5 within a
continuous range to each medical fused image, where 0–1 means that
image fusion performance is bad, it is very annoying and seriously
affects the diagnosis. 1–2 indicates fusion result is poor, which is
annoying and affects the diagnosis. 2–3 means the image fusion quality
is fair, it is slightly annoying and slightly affects the diagnosis. 3–4
means the image fusion result is good, it is perceptible, but not affects
the diagnosis. 4–5 indicates that fusion performance is excellent, it is
imperceptible and accurate diagnosis. The different subjective quality
score provide us to easily assess the performance of objective metrics.
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Table 1
SRCC, KRCC, PLCC and RMSE values of average subject.

Image set SRCC KRCC PLCC RMSE

𝜇(𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 𝜎(𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 𝜇(𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 𝜎(𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 𝜇(𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 𝜎(𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 𝜇(𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 𝜎(𝑠𝑢𝑏𝑗𝑒𝑐𝑡)

Average 0.87 0.07 0.78 0.10 0.89 0.07 0.16 0.05

Table 2
K-S test result of individual MMIF algorithms.

K-S test DTM-PCNN NNM LP-SR CSCS GFF DES ISML CSR

DTM-PCNN 0 1 1 1 1 1 −1 1
NNM −1 0 −1 1 −1 −1 −1 1
LP-S −1 1 0 1 1 1 −1 1
CSCS −1 −1 −1 0 −1 −1 −1 −1
GFF −1 1 −1 1 0 0 −1 1
DES −1 1 −1 1 0 0 −1 1
ISML 1 1 1 1 1 1 0 1
CSR −1 −1 −1 1 −1 −1 −1 0

2.2. Subjective data analysis

Generally, to calculate more accurate evaluation results, the abnor-
mal values are discarded using the outlier removal method. However,
there are any abnormal values, maybe after years of medical education
and clinical experience, radiologists diagnose without any abnormal
values. After the subjective test, we can obtain 20 subjective scores
for each fused image. The subjective scores of each fused image is
averaged to obtain the final quality score, i.e. the mean opinion score
(MOS) [38,39]:

�̄� = 1
𝑁

𝑁
∑

𝑖=1
𝑢𝑖 (1)

where 𝑢𝑖 denotes the subjective score of the 𝑖𝑡ℎ radiological doctors,
N denote the 20 radiologists. Then the standard deviation of the
subjective scores is computed [38,39]:

𝜎 =

√

√

√

√

𝑁
∑

𝑖=1

(

𝑢𝑖 − �̄�
)2

(𝑁 − 1)
(2)

For performance evaluation, spearman rank order correlation co-
efficient (SRCC), kendall rank order correlation coefficient (KRCC),
pearson linear correlation coefficient (PLCC) and root -mean-square
error (RMSE) are adopted as the evaluation criteria [40–42]. Specifi-
cally, SRCC and KRCC are two most popular rank correlation indicators,
which can predictive consistency between MOS values and individual
subject ratings, while PLCC and RMSE are used for measuring predic-
tion accuracy. For each image set, we calculate the SRCC, KRCC, PLCC
and RMSE values between MOS values and individual subject ratings.
When this is conducted for all 20 subjects, we calculate the mean (𝜇)
and standard deviation (𝜎) of SRCC, KRCC, PLCC and RMSE values
over all subjects. The average performance cross all individual subjects
scores over all 34 image set are showed in Table 1. From Table 1, we
can see that average subject scores of SRCC, KRCC, PLCC and RMSE
perform quite consistently with relatively low variations for different
image modalities.

2.3. Performance of existing MMIF algorithms

In practice, with many MMIF schemes at present, no single MMIF
algorithm performs best for all images, and this is not easy to choose
the method with best performance for image fusion. Fortunately, since
the subjective test results have been obtained, relative performance
gradings of the MMIF methods can be measured by implementing
a systematic evaluation of MMIF algorithms. As we know, a high
quality fused image will increase the confidence in diagnosing and
subsequently lead to the right treatment, a better MMIF algorithm may
obtain higher quality fused images for accurate diagnosis, which will

Fig. 4. Mean and standard deviation of subjective rankings of individual MMIF
algorithms across all image sets.

have higher scores by radiologist. As a result, we can use the average
MOS values to assess the relative performances of different MMIF
algorithms. Fig. 4 shows the average MOS values and the corresponding
mean and standard deviation for fused images, which are generated
by the eight MMIF algorithms over all 34 image sets. It is observed
from Fig. 4 that ISML achieves the best performance on average, this
indicates that the fusion algorithm performs better than other algo-
rithms. LP-SR is the second best on average. DTM-PCNN produces quite
similar average performance and larger standard deviations than LP-
SR. This suggests that DTM-PCNN might perform well on some images
but perform bad on some other images, thus the overall performance
cannot be guaranteed. The average MOS value of CSCS is the lowest,
which indicates that its performance is the worst.

In order to demonstrate performance of the MOS values in different
fusion algorithm, we compare the 8 pairs of MMIF algorithm by K-
S test method. Considering that the same radiologist scored fused
images for each fusion algorithm, we used paired samples K-S tests to
compare in the experiment. Our data is divided into multiple subsets
according to different fusion methods, and each subset performs only
one statistical method. Table 2 shows the result of K-S test of individual
MMIF algorithms, where a symbol 0 denotes the null hypothesis that
the data in two algorithms are from the same continuous distribution,
and cannot be refused at the alpha level. A symbol 1 denotes the row
algorithm is better than the column algorithm, whereas a symbol -1
denotes the row algorithm is inferior to the column algorithm. From
Table 2, we can see that there is no significant difference between the
means in a pairs fusion algorithms (GFF and DES), and their fusion
effect has little difference. The results of others pair of fusion algorithms
show that their fusion effects can be considered as differences.

3. Objective quality assessment of MMIF images

3.1. Nonsubsampled contourlet transform

Medical images typically consist of smooth regions and edges, and
they can be well characterized by their features. NSCT is a image
decomposition transform tool with shift-invariant, multiscale and mul-
tidirection, which can be utilized to process different features [19–21].
It is based on two filter bank (FB), the nonsubsampled pyramid FB
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(NSPFB) and the nonsubsampled directional FB (NSDFB). The NSPFB
performs multiscale decomposition, which divides an image into a
low frequency sub-band and a high frequency sub-band. With 𝑘 de-
composition layers, NSPFB generates 𝑘 + 1 sub-images, including one
low frequency image and k high frequency images, which have the
same size as source image. NSDFB provides direction decomposition,
which decomposes the high frequency sub-bands image from NSPFB in
each layer, producing 2𝑙 directional sub-images, and their size is the
same to the source image, where 𝑙 is the number of decomposition
directions. So, NSDFB gives the NSCT with more accurate directional
detail information. The multi-scale and multi-directional characteristics
of NSCT are very useful in extracting more directional information.

3.2. Pulse coupled neural network

PCNN is a based cat visual cortex biologically inspired spiking
neural network, which is no training processing. The output pulses of
PCNN can describe the regional and detailed information of an input
image effectively. Because of its superior performance, PCNN has been
widely used in medical image processing. The simplified PCNN model
is given in Fig. 5. There are three modules: the dendritic (feeding input
𝐸𝜐,𝜈 and linking input 𝐼𝜐,𝜈 (𝑛)), the linking modulation 𝑀𝜐,𝜈 (𝑛) and the
pulse generator 𝐹𝜐,𝜈 (𝑛) [22,23], which are denoted by:

𝐸𝜐,𝜈 (𝑛) = 𝑆𝜐,𝜈 (3)

𝐼𝜐,𝜈 (𝑛) = 𝑒−𝛼𝐿𝐼𝜐,𝜈 (𝑛) + 𝑉𝐿
∑

𝑘,𝑙
𝑊𝜐,𝜈,𝑘,𝑙𝐹𝜐,𝜈 (𝑛 − 1) (4)

𝑀𝜐,𝜈 (𝑛) = 𝐸𝜐,𝜈 (𝑛)
[

1 + 𝛽𝐼𝜐,𝜈 (𝑛)
]

(5)

𝑇𝜐,𝜈 (𝑛) = 𝑒−𝛼𝑇 𝑇𝜐,𝜈 (𝑛 − 1) + 𝑉𝑇𝐹𝜐,𝜈 (𝑛 − 1) (6)

𝐹𝜐,𝜈 (𝑛) =
{

1,𝑀𝜐,𝜈 (𝑛) > 𝑇𝜐,𝜈 (𝑛)
0,𝑀𝜐,𝜈 (𝑛) ≤ 𝑇𝜐,𝜈 (𝑛)

(7)

where 𝑊 is the synaptic weight matrices 𝜐, 𝜈 represent the pixel lo-
cations 𝑘, 𝑙 represent the dislocation in a symmetric neighborhood
surrounding a pixel. 𝑆𝜐,𝜈 (𝑛) stands for the external stimulus. In this
paper, gray value of the pixel instead of external stimulus of PCNN.
𝑉𝐿 and 𝛼𝐿 represent normalizing constants. 𝛽 is the linking parameter,
which denotes the weight of linking field. 𝛼𝑇 and 𝑉𝑇 denote attenuation
coefficient and threshold magnitude coefficient, respectively.

3.3. Proposed quality metric

In our work, a quality evaluation metric of MMIF image is proposed
via PCNN in NSCT. Fig. 6 shows the flowchart of the proposed met-
ric. Uniformly, let F represents the fused image. The proposed fusion
method is stated in following steps.

Firstly, the fused image F is transformed by NSCT to obtain one
low-frequency sub-band

{

𝐹𝐿
𝜄
}

and a series of high-frequency sub-band
{

𝐹𝐻
𝜄,𝜃

}

at each level 𝜄 ∈ [1, 𝑛] and direction 𝜃.

Secondly, the
{

𝐹𝐿
𝜄
}

and
{

𝐹𝐻
𝜄,𝜃

}

are used as the stimulus of the
PCNN, respectively.

𝑇 𝐿
𝜄 = 𝑃𝐶𝑁𝑁

(

𝐹𝐿
𝜄
)

, 𝑇𝐻
𝜄𝜃 = 𝑃𝐶𝑁𝑁

(

𝐹𝐻
𝜄𝜃
)

(8)

where 𝑃𝐶𝑁𝑁 (⋅) denotes the PCNN functions by Eqs. (3)–(7), which
described in Section 3.2. The firing times matrix

{

𝑇 𝐿
𝜄
}

and
{

𝑇𝐻
𝜄,𝜃

}

de-

note the total fired times motivated by
{

𝐹𝐿
𝜄
}

and
{

𝐹𝐻
𝜄,𝜃

}

, respectively.
If the iteration number 𝑛 = 𝑁𝑚𝑎𝑥, 𝑁𝑚𝑎𝑥 is the max iteration times, then
iteration stops. The parameters of PCNN used in the experiments are
set as follows: 𝑊 = [0.7071, 1, 0.7071; 1, 0, 1; 0.7071, 1, 0.7071], 𝑉𝐿 = 1.0,
𝛼𝐿 = 0.0693, 𝛼𝑇 = 0.2, 𝑁𝑚𝑎𝑥 = 200.

Next, the quality of low-frequency coefficient
{

𝑇 𝐿
𝜄
}

at location (𝑚, 𝑛)
is given by:

𝑄𝐿 = 𝑇 𝐿
𝜄 (𝑚, 𝑛) (9)

where 𝑚 ∈ {1, 2,… ,𝑀} , 𝑛 ∈ {1, 2,… , 𝑁}, 𝑇 𝐿
𝜄 (𝑚, 𝑛) is firing times

matrix of the low-frequency sub-band coefficient at location (𝑚, 𝑛).
Meanwhile, the sum of firing times value is adopted to detect the
quality of high-frequency sub-band, which is computed and denoted
by:

𝑄𝐻 =
𝑀
∑

𝑁
∑

𝑇𝐻
𝜄,𝜃 (𝑚, 𝑛) (10)

Finally, the evaluation results of two components are merged to get
the overall quality score:

𝑄 = 𝑎
(

𝑄𝐿
)𝑏 + (1 − 𝑎)

(

𝑄𝐻
)𝑐 (11)

where 𝑎, 𝑏 and 𝑐 are parameters, which are utilized to balance the
relative relationship of the two components in the quality evaluation
of MMIF images. Parameters are determined by experiments. In this
paper, we set 𝑎 = 0.8, 𝑏 = 2.5, 𝑐 = 3.

4. Experimental results

4.1. Performance evaluation

To verify the effectiveness of the proposed quality evaluation met-
ric, we combine 𝑄𝐿 and 𝑄𝐻 into the MMIF quality metrics with
Eq. (11) and their performances on the MMIFID database is evalu-
ated. Table 3 summarizes the experimental results together with the
performances of each component

(

𝑄𝐿, 𝑄𝐻
)

and proposed metric that
combines the two components in accordance with SRCC, KRCC, PLCC
and RMSE. We have computed the results of each image set, and the
average performance over all 34 image set are shown in Table 3. It is
observed from Table 3 that our metric is very valid for MMIF images,
which indicates that both two components are only provide a moderate
correlations with subjective opinions, after combining these two com-
ponents, the proposed metric obtains performance improvement on two
parts.

To further check the validity of the proposed quality model, we
also make comparison with eleven state-of-the-art image fusion quality
metrics: (1) Gradient based fusion metric 𝑄𝐺 [9], which evaluates
the success of gradient information from source images is injected
in to the fused image from the source images. (2) Structure based
metrics 𝑄𝑆 [10], which utilizes the structure similarity to measure
the structural information in the fused image. (3) Edge information
𝑄𝐸 [11], which evaluates the amount of edge information transmitted
from the source image to the fused image. (4) Phase congruency
𝑄𝑃 [12], which reflects image salient features. (5) Ratio of spatial
frequency error based metrics 𝑄𝑅𝑆𝐹𝐸 [13], which addresses perceptual
assessment with sorting in the fused image. (6) Mutual information
based metrics 𝑄𝑀𝐼 [14], which measures correlation between the two
input images, or how much the information of the source image is
kept in the fused image. (7) Entropy 𝑄𝐸𝑁 [15] measures the amount
of information in the fused image. (8) Optimizing structural similarity
index 𝑄𝑂𝑆𝑆𝐼 [43] evaluates fused image. (9) In-depth analysis of Tsallis
entropy-based metrics 𝑄𝑇𝐸𝐼𝐴 [44] measures fused image quality. (10)
𝑄𝐵𝑀𝑃𝑅𝐼 [45] computes the distorted image quality. (11) Multi-task
end-to-end optimized deep neural network 𝑄𝑀𝐸𝑂𝑁 [46], which evalu-
ates blind image quality. In the above strategies, the larger the values
of 𝑄𝐺, 𝑄𝑆 , 𝑄𝐸 , 𝑄𝑃 , 𝑄𝑀𝐼 , 𝑄𝐸𝑁 , 𝑄𝑂𝑆𝑆𝐼 , 𝑄𝑇𝐸𝐼𝐴, 𝑄𝐵𝑀𝑃𝑅𝐼 , 𝑄𝑀𝐸𝑂𝑁
denote better quality, however, the smaller the values of 𝑄𝑅𝑆𝐹𝐸 shows
better quality. We calculate the SRCC, KRCC, PLCC and RMSE values
of all 34 image sets for twelve image fusion quality metrics (including
the eleven existing models described above and proposed metric). The
average performances over all image sets are summarized in Table 4.
It is observed from Table 4 that our proposed strategy obtains the
best performance on the average values of SRCC, KRCC, PLCC and
RMSE. Unfortunately, the eleven state-of-the-art image fusion quality
evaluation metrics seem be impossible to provide sufficient quality to
predict MMIF images.
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Fig. 5. Diagrammatic sketch of simplified PCNN.

Fig. 6. Flowchart of the proposed quality metric.

Table 3
SRCC, KRCC, PLCC and RMSE performance of proposed model and its two components.

Image set SRCC KRCC PLCC RMSE

𝑄𝐿 𝑄𝐻 Pooling 𝑄𝐿 𝑄𝐻 Pooling 𝑄𝐿 𝑄𝐻 Pooling 𝑄𝐿 𝑄𝐻 Pooling

Average 0.71 0.46 0.73 0.58 0.35 0.61 0.75 0.60 0.79 0.29 0.30 0.27

Table 4
SRCC, KRCC, PLCC and RMSE performance assessment of eleven existing schemes and
the proposed model on MMIFID database.

Metric SRCC KRCC PLCC RMSE

𝑄𝐺 0.61 0.47 0.45 0.36
𝑄𝑆 0.67 0.52 0.65 0.28
𝑄𝐸 0.54 0.42 0.52 0.40
𝑄𝑃 0.33 0.29 0.33 0.41
𝑄𝑅𝑆𝐹𝐸 0.43 0.34 0.50 0.33
𝑄𝑀𝐼 0.55 0.44 0.51 0.39
𝑄𝐸𝑁 0.39 0.28 0.33 0.50
𝑄𝑂𝑆𝑆𝐼 0.31 0.23 0.20 0.44
𝑄𝑇𝐸𝐼𝐴 0.42 0.34 0.16 0.43
𝑄𝐵𝑀𝑃𝑅𝐼 0.25 0.21 0.28 0.55
𝑄𝑀𝐸𝑂𝑁 0.26 0.23 0.27 0.39
Proposed 0.73 0.61 0.79 0.27

For better understanding the relationships between the above MMIF
quality measures, a dendrogram plot is used to represent the similarities
between the MMIF quality metrics. To be specific, firstly, the KRCC
values between the ten MMIF quality metrics are calculated and aver-
aged for image sets. Then, KRCC values are converted to distances by
using the dendrogram, and Euclidean distance is adopted as a distance
metric, to cluster KRCC values, the arithmetic average algorithm of

unweighted pair group measure are used [39], which are shown in
Fig. 7. The horizontal axis is used as the leaf nodes, which shows the
MMIF quality metric and MOS. The vertical axis represents distances
between the nodes. Node height is the distance between the left and
right sub-branch clusters. From the evaluation results in Fig. 7, it is
clear that our metric produces the best results among all the existing
algorithms, meanwhile it is close to MOS value.

4.2. Performance ranking consistent

In MMIFID database, there are two image groups, Group 1 (G1):
fused images generated by fusion of anatomical images and functional
images; Group 2 (G2): fused images generated by fusion of anatomical
images and anatomical images. For a specific MMIF algorithm, the
average MOS value is utilized to measure its performance, which is
used as ground truth. The average objective score is also calculated. The
rankings consistent performance between the subjective rankings and
objective rankings is listed in Table 5, where ranking 1 shows the best
performance and 8 represents the worst performance, and inconsistent
rankings are marked in boldface. By contrast, the proposed method is
less inconsistent rankings than other quality metric, it demonstrates the
best performance.
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Table 5
Ranking of the MMIF algorithms according to the subjective scores and predicted scores obtained by twelve objective metrics
in two groups.

Group MMIF MOS 𝑄𝐺 𝑄𝑆 𝑄𝐸 𝑄𝑃 𝑄𝑅𝑆𝐹𝐸 𝑄𝑀𝐼 𝑄𝐸𝑁 𝑄𝑂𝑆𝑆𝐼 𝑄𝑇𝐸𝐼𝐴 𝑄𝐵𝑀𝑃𝑅𝐼 𝑄𝑀𝐸𝑂𝑁 Proposed

G1

IMSL 1 1 1 1 5 6 1 6 1 1 3 5 1
DTM-PCNN 2 2 2 2 6 4 2 8 5 2 1 2 2
LP-SR 3 5 5 5 4 2 5 5 2 7 4 4 3
GFF 4 3 3 4 1 3 4 3 7 5 5 3 6
DES 5 8 6 7 8 5 8 1 4 8 2 6 5
NNM 6 4 4 3 3 1 3 4 6 3 8 1 4
CSR 7 6 7 8 2 7 7 7 3 6 7 7 7
CSCS 8 7 8 6 7 8 6 2 8 4 6 8 8

G2

IMSL 1 1 1 1 2 5 1 8 7 1 1 2 1
LP-SR 2 5 5 4 4 3 4 4 6 7 4 6 2
DTM-PCNN 3 2 2 2 5 1 2 7 8 3 5 1 3
GFF 4 4 3 5 1 6 5 2 1 4 2 5 5
DES 5 8 7 7 6 4 7 1 4 6 3 4 6
NNM 6 3 4 3 7 2 3 3 3 2 8 3 4
CSR 7 6 6 8 3 7 8 6 5 8 6 7 7
CSCS 8 7 8 6 8 8 6 5 2 5 7 8 8

Fig. 7. Similarity dendrogram of MOS and objective image fusion quality measures.

4.3. Computational complexity

We also compare the performance of execution time for MMIF
quality models. Specifically, the average time for predicting the scores
of MMIF images with resolution 256 × 256 in MMIFID database is
calculated to measure the computation complexity. The average ex-
ecution time of twelve quality metrics are listed in Table 6. It is
observed from Table 6 that most of the metrics are fast to calculate. The
proposed are more computationally demanding. This mainly attributes
to the decomposition operation and more PCNN iteration required. In
implementation process, it takes up most of the time, but it demon-
strates the best performance. In the future, we will try to explore other
technologies to improve computational efficiency.

5. Conclusion and discussion

Multimodal medical image fusion has been extensively researched
for improving clinical diagnostics and treatment. However, existing
quality assessment methods are general-purpose image fusion quality
measures, which are not designed for MMIF algorithms and MMIF
images, and little work has been devoted to the quality assessment
of MMIF images. This paper proposed a perceptual quality evaluation
scheme for MMIF images. Firstly, we create a MMIF image database
and conducted subjective experiments to obtain the ground truth of
each MMIF image. Secondly, we present an objective quality assess-
ment algorithm for MMIF via combining PCNN and NSCT. Finally, the
performances of MMIF algorithms are compared based on MMIFID,

Table 6
Average execution time for predicting the quality scores in MMIFID database by
different image quality metrics.

Metric Time (s) Metric Time (s)

𝑄𝐺 0.0260 𝑄𝐸𝑁 0.0007
𝑄𝑆 0.0148 𝑄𝑂𝑆𝑆𝐼 1.0677
𝑄𝐸 0.0122 𝑄𝑇𝐸𝐼𝐴 0.0092
𝑄𝑃 0.7945 𝑄𝐵𝑀𝑃𝑅𝐼 0.6178
𝑄𝑅𝑆𝐹𝐸 0.0096 𝑄𝑀𝐸𝑂𝑁 0.0132
𝑄𝑀𝐼 0.0054 Proposed 8.1631

and the effectiveness is verified. Experimental results show that our
metric exhibits the highest consistency with the subjective results,
and outperforms the existing state-of-the-art metrics, which is more
applicable to evaluate MMIF images.

As one of the first attempts on the quality assessment of MMIF
images, our metric outperforms the existing ones, but it is still not
so good (correlation coefficient < 0.8), thus, the proposed method has
several limitations that need to be resolved or improved in the future
research. Firstly, the proposed method is mainly based on the NSCT and
PCNN, other technologies that have been successfully used in image
quality assessment may be exploited in the context of MMIF, such as
extracting image spatial features of structure and texture. Secondly, due
to functional images (e.g., PET and SPECT) are color images. Appro-
priate consideration of color features may improve the performance
of image fusion quality assessment models. Thirdly, the existing image
fusion subjective databases are nearly 2-dimensional scenes, including
our MMIF subjective database. But most medical images we encounter
in clinical practice are often 3-dimensional scenes. It is useful to extend
the proposed model to consider 3-dimensional scenes. Fourth, how to
use quality assessment model as new optimization goal to redesign
MMIF algorithm for obtaining better fused image quality is challenging
and interesting problems yet to be explored. Finally, modern medical
imaging scan post-processing platform often display fused image gener-
ated by merging different imaging modalities before diagnosis. Quality
assessment and optimization methods may be applied to these extended
medical applications.
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